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Abstract. We present new first integrals of the two-dimensional Lotka—\Volterra systems which
have a polynomial inverse integrating factor. Moreover, we characterize all the polynomial first
integrals of the two-dimensional Lotka—\olterra systems.

1. Introduction and statement of the results

The two-dimensional Lotka—Volterra dynamical system is defined by
x = x(a1 + b11x + b12y) y = y(az + barx + bazy) (1)

where(ay, b11, b1z, az, ba1, byp) are six real (or complex) parameters. This system introduced
by Lotka [1] and Volterra [2] appears in chemistry and ecology where it models two species
in competition, and it has been widely used in applied mathematics and in a large variety of
physical topics such as laser physics, plasma physics, convective instabilities, neural networks,
etc. Many authors have examined the integrability of the two-dimensional Lotka—Volterra
systems, see for instance (akt al [3] (who used the Carleman method), Hanal [4]
(who used the Hamiltonian method), Gaiand Llibre [5] and Cab et al [6] (who used
the Darboux theory of integrability) or the integrability of the three-dimensional Lotka—
\olterra systems (see Grammaticetsal [7], Almeida et al [8] and Caib and Llibre [9]).
These systems have been studied in arbitrary dimension by €gal [3] and Caib and
Feix [10].

Recently, Moulin-Ollagnier [11] and Labrunie [12] have characterized the polynomial first
integrals of a special three-dimensional Lotka—\Volterra system, the so-éali€dsystem, i.e.

x=x(Cy+2) y=y(x+Az) z=2z(Bx+Yy).

The fact that the vector fields associated with A@C systems are homogeneous helps in the
study of their polynomial first integrals. In general, this is not the case for system (1), but of
course this system is simpler than th&C system as it is two dimensional.

The problem of the integrability of ordinary differential equations is closely related to the
problem of finding first integrals. The difficulty of the task was already noted by P@&ncar
[13] in his discussion of a method to obtain polynomial or rational first integrals. The search
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for first integrals is a classical tool in the classification of all trajectories of a dynamical
system. The following natural question arises: given a system of ordinary differential equations
depending on parameters, how does one recognize the values of the parameters for which the
system possesses first integrals, or more specifically polynomial first integrals? Many different
methods have been used for studying the existence of first integrals. Some of them have been
developed for Hamiltonian systems, such as the Ziglin [14, 15] analysis, or the method based
on the Noether symmetries [16]. Other methods can be applied to non-Hamiltonian systems:
the method of Darboux [17], the method of Lie symmetries [18], Paimlawalysis [19],

the use of Lax pairs [20], the direct method [21], the linear compatibility analysis method
[22], the Carlemann embedding procedure [3, 10, 23, 24], the Hamiltonian method [4, 25], the
quasimonomial formalism [26], etc.

Typically, methods like Carleman or Hamiltonian are based on giving an ansatz to the
invariants (time-dependent first integrals). If the goal is only to obtain first integrals (i.e.
time-independent first integrals), then the progress in computer algebra now allows us to use
successfully the old method consisting in finding first integrals through the use of integrating
factors. Infact, once the integrating factor is found then the problem is reduced to a quadrature.
So, the first difficulty is in finding the integrating factor, the second being of pure integral
calculus. For the first, the method currently used is to give an ansatz, searching integrating
factors of a given type (for instance, a polynomial inverse) and solve an algebraic system to
determine the coefficients and the conditions that the differential system must satisfy. Let us
recall the basic concepts.

By definition acomplexXrespectivelyreal) planar polynomial differential systean simply
apolynomial systerwill be a differential system of the form

dx . dy .

L —x=P — =y = 2

o = =FEy & Ox,y) 2)
where the dependent variablesindy are complex (respectively, real), the independent one
(thetime) ¢ is real, andP and Q are polynomials in the variables and y with complex
(respectively, real) coefficients. The numhler= maxdegP, degQ} denotes thelegreeof

the polynomial system. Thus the Lotka—\Volterra system (1) is a polynomial system of degree
two, with

P = x(ay + by1x + b12y) 0 = y(az + boyx + byoy). 3

In what follows we will denote the vector field associated with the polynomial system (2)
by

X—P8 +Q8
T ox dy’

We denote byF, either the real fiel®R, or the complex fieldC; and byF-polynomial
systenthe polynomial system (2) with the coefficients of the polynomiasndQ in F. Also
we denote byF[x, y] the ring of polynomials in the variables and y with coefficients in
.

Here we say thafl : F?> — F is afirst integral of the F-polynomial system (2) it/ is
a non-constant function which is constant on all solution cufxés), y(z)) of system (2);
i.e. H(x(t), y(t)) = constant for all values affor which the solution(x(z), y(¢)) is defined.
Clearly, H is a first integral of system (2) if and only if the functiah is identically zero.
If H is a first integral of system (2), then the trajectories of (2) are contained in the curves
H(x, y) = h whenh varies inF.
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Let R : F? — T be an analytic function which is not identically zero. The function
R is anintegrating factorof the R-polynomial system (2) if the following three equivalent
conditions holds:

d(RP) _B(RQ)

& div(RP,RQ)=0 <& XR+Rdiv(P,Q)=0. 4)
ax ay
As usual the divergence of the vector fidlds defined by
div(X) = div(P, Q) = B_P + %
dx  dy

Thefirst integral H associated with the integrating fact®r is given by

H(x,y) = / R(x,y)P(x,y)dy +h(x)

whereh (x) is a function satisfying H/dx = —RQ. Then

)'c:RP:a—H )'):RQ:—%. (5)
ay ax

Conversely, given a first integrél of system (2) we can always find an integrating fadtor

for which (5) holds.

Chavarrigaet al [27] consider the inverse integrating factor and show that, in general, it
is better to work with it instead of working directly with a first integral or an integrating factor
to study the integrability of a given two-dimensional differential system.

Let V : F? — F be an analytic function which is not identically zero. The functiois
aninverse integrating factoof the R-polynomial system (2) if the following condition holds:

XV —vdiv(P, Q) =0 (6)

which is simply (4) written withR = 1/V.

The paper is divided into two parts. In the first part we study the first integrals of the
two-dimensional Lotka—\Volterra systems which have a polynomial inverse integrating factor,
and in the second part we characterize all the polynomial first integrals of the two-dimensional
Lotka—\Volterra systems via a polynomial integrating factor.

The results of the first part are given in the next theorem, where we omit the
symmetric cases that can be obtained under the symroetey, b11, b1, y, az, bo1, bao) —

(y, az, bay, bo1, x, a1, b1z, b11). We must mention that the first integrals presented in the next
theorem have been obtained only using polynomial inverse integrating factors of degree at
most five.

Theorem 1. System (1) possess a first integfalif it satisfies the conditions:

(@) r12 = a1bao(ba1 — b11) + asb11(b12 — bao) = 0 andayasbi1b22(b12 — boo) (bo1 — b11) # 0,
and then

H = xbzz(bzl—bn)ybn(blz—bzz) (a1az + agby1x + albzzy)bllbzz_b12b21

(b) b1o = b1 = 0andaaz(ay + ap) #+ 0, and then

H = xa2y7a1 (a]_ + bllx)7a2 (a2 + bZZy)a1
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(C) b1z = —b2z, bo1 = 0 andazaz(ay + az) (a1 + 2a2)bz2 # 0, and then

H = xy~"(ag + baoy)™™2 [(ay + az)(ay + b11x) + biabooxy]

(d) a=ai,by1=0 andbzz(blz — b)) (b1 — 2b22) ;ﬁ 0, and then
H = xbzz(al + b22}’)b227b12 [bllx + (b12 - b22)y]_b22

(€) ax = az = 0, [boo(boy — b11) + b11(b12 — b22)](b11b22 — b1obr1) = 0 andb11boa(bis —
b22)(b21 — b11) # 0, S0

H = xbzz(bm*bn)ybn(bu*bzz) (bp1x + bzzy)bnbzz*bizbﬂ

(f) a1 = az, bpy = by = 0andaybyo #* 0, and then

H = x™“(byax + byoy) e

(g) ay =ap, bop1 =0, b12 = by andbzg ;ﬁ 0, and then

H = (a1 +bpy) il

(h) a1 = az, b1z = 3byy, bp1 = 3b11 andaibi1b2o # 0, and then

H = [a1(b1ax + bp2y) + (b11x — baoy)?](b11x — b2y) (a1 + b11x)?
+booy(2a1 — 2by1x + bygy)] ~Y?

(I) ay = ap, byp = 3byy, b1 =0 andalbnbzg ;ﬁ 0, and then

H = y[b11x(2a1 + bapy) + 2(a1 + bazy)?] (a1 + baay) ~2(b11x + 2bpy) ™t

(j) a1 = ap, bip = 3byo, b11 = 2by1 andabr1 #* 0, and then

H = y*[aibix + (a1 + bazy)|[arbiix + 2baoy(ay + baoy)] 2

(k) ay = —dadp, b1o = —by, b1 =0 andalbllbzz ;ﬁ 0, and then

H =y Yay — by) eXp|:al(al—+blmi|~

b11booxy

The theorem is stated when system (1) is complex. If this system is real, then all the

functions of the formf (x, y)* that appear in the expression of the first integrals must be
Lf (e, mIe.
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Theorem 1 will be proved in section 2. We remark that the first integral given in
statement (a) exists for a subclass of codimension one inside the six-dimensional space of
the Lotka—\olterra systems (1), the first integrals (b)—(d) exist for a subclass of codimension
two, and the remaining first integrals of theorem 1 exist for a subclass of codimension three.
Note also that the first integral (a) was already known [3]. Of course, if we had searched
polynomial inverse integrating factors of degree larger than five, we would have obtained
more new first integrals for the two-dimensional Lotka—Volterra systems.

The next theorem concerns our main result characterizing all polynomial first integrals of
the two-dimensional Lotka—\olterra systems.

Theorem 2. Suppose that the two-dimensional Lotka—\Volterra system is not trivial, i.e. that
b2, + b2, + b2, + b3, # 0. Then given a non-negative integesystem (1) has a polynomial
first integral of degree: + 3 if and only if one of the following cases holds:

ibip+ (n+3—i)bp=0 (n+3— j)bi1+ jby =0 iap+ jaz =0 (7)
withi € {1,...,n+1}andj € {1,...,n+2—i}. Moreover, under assumptions (7) the first
integral is

H = x'y/ [i(ay + b1ax) — jbaay]"* /. (8)

Note that for each if we varyi andj there argn + 1)(n + 2) /2 polynomial first integrals of
degreen + 3.

Theorem 2 shows that all polynomial first integrals of the two-dimensional Lotka—\Volterra
systems are particular cases of the first integrals (a) and (e) of theorem 1. We will prove
theorem 2 in section 3. The key point in our proof will be the employment of the polynomial
integrating factor associated with a polynomial first integral of a polynomial differential system.

2. Polynomial inverse integrating factors

Here we use onlpolynomial inverséntegrating factors up to degree five to obtain some new
first integrals of the two-dimensional Lotka—\olterra systems (1).

We writeV = Z?+j:0 a; jx"y’. Then, the identically zero polynomial (6) of degree 1
provides the following linear system ¢ + 2)(n + 3)/2 equations in thén + 1)(n + 2)/2
variabless; ; (the coefficients o¥). Each equation of this system comes from identifying to
zero every coefficient of (6). Thus the coefficient corresponding to the monehyiais

a; ;[ — Day + (j — Dazl + a; ja[(i — b1z + (j — 3)b22]
+a;_1 ;[(i — 3)b11+ (j — Db2].

If some of the coefficients; ,, which appear in the last equation do not appedr jithen they
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must be taken equal to zero. Therefore, the complete linear system is

ap.o(—a1 — az) =0
ai,o(—az) +ag,0(—2b11 — b21) =0
ao1a1 +ag,0(b12 + 2b32) =0
azolar — az) +ay0(—b11 — b21) =0
a1,0(—2b22) +ag,1(—2b11) =0

ap2(—ay * az) +ag1(—b12 — b22) =0
aso(2a1 — az) +az0(—b21) =0
aziax +az0(b12 — 2b32) +a11(—b11) =0
a1,2a2 +ay1(—b22) +ag 2(—2b11 + b21) =0
ao3(—ax + 2az) +ag 2(—b12) =0
aon(—ar+ (n — 1)az) +agn-1(—biz2 + (n — 3)bz2) =0
ano((n —2)b11—b21) =0

ano((n — Db12 — 2b32)  +ay-11((n — 3)b11) =0

an—1,1((n — 2)b1o — b2y) +au,_22((n —Ab11+b21) =0

: : =0
ayn—1((n — 3)b22) +ap,(—2b11+ (n —1)by) =0
agn(—b12+ (n — 2)by) =0.

We are searching here for the polynomial inverse integrating fadtoos degreen. So,

in order for the linear subsystem formed by the last 2 equations in the + 1 variables
an.0, pn-11, - - -, do,, t0 have a non-zero solution, the + 2) x (n + 1) matrix M of this
subsystem must have rank smaller thanl. Hence, the +2 determinants of the submatrices
(n+1) x (n+1) of M obtained by omitting a row af/ must be zero, i.e.

n+l

[ [« = 1= k)bas + (k — 2)b21) =0
k=1
[]’[((n —1— k)b + (k — 2);;21)} X (=b1z+ (n — b)) =0

k=1

n—1 2
[]‘[((n —1— Kb+ (k- 2>b21>} x []‘[((l —2)bip+ (n —1— l)bzz):| =0

k=1 =1 9)

=0
((n — 2)b11 — b21) X |:l_[((1 —2)b12+(n—1- l)bzz)] =0
=1

n+l

[]W=2br2+ (= 1= Dbyy) =0.
=1
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If n # 3 then the solutions of this last system are
(i — b+ (n—1—i)bp=0 (n—=1— jbu+(j —2bu=0 (10)
with
ie{l,...,n+1 jefl,....n+2—i}. (11)

So we havdn + 1)(n + 2)/2 different solutions.
If n = 3 then the determinant of system (9) is identically zero.

Proof of theorem 1. First we search the polynomial inverse integrating factors of degree three.
Taking all the coefficients;; of V zero except for the coefficientss, ax; andas», the above
linear system becomes

—apbi taiax =0
—a11byy + ararp = 0 (12)
az1(b12 — bap) + ara(boy — b11) =0

which is a linear system with three equations and three variabjes,; andai,. The solution
of (12) is not identically zero if the determinant of thg, i.e. 712 = a1ba(ba1 — b11) +

a2b11(b12 — bzz) is zero. Then, its solution i511 = aqay, a1 = asb11 andalg = a1by if

a1azb11b22(b12 — boo)(bo1 — b11) # 0. Hence

V = xy(aiaz + arb11x + a1broy).

Using this inverse integrating factor we obtain the first integral (a).
Searching other polynomial inverse integrating factors of degree three we find

V = x(ay + baoy)[b11x + (b12 — b22)y]
if a1 = ao, bo1 = 0 @andbaa(b1z — b2o) (b12 — 2b22) # 0;
V = xy(b11x + baoy)

if ay = az = 0, [b2a(b21 — b11) + b11(b12 — b22)](b11b22 — b12b21) = 0 andbi1bzo(b12 —
b2o)(bo1 — b11) # 0; and

V = x%(az + bay)

if a1 = az, bo1 = 0, by = byy @andby, # 0. These different inverse integrating factétof
degree three provide the first integrals (d), (e) and (g), respectively.

Now we search the polynomial inverse integrating factors of degee®, 1, 2, 4, 5 which
provide integrable Lotka—\olterra systems different from the systems with first integrals (a),
(b), (e) and (g). Using the above linear system, itis easy to see that there are no new integrable
cases having a polynomial inverse integrating factor of degree0 or 1.

Searching the polynomial inverse integrating factors of degree four we obtain

V = xy(a1 + biix)(az + baoy)

if b2 = bo; = 0 andayaz(ay + az) # 0. ThisV provides the first integral (b).
Computing polynomial inverse integrating factors of degree two which correspond to new
integrable systems, we obtain

V = x(b11x + b12y)
if ay = ag, bpy = by, = 0 andaiby, # 0. ThisV provides the first integral (f).
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Searching polynomial inverse integrating factors of degree five which give new integrable
systems, we find

V = xy(az + bazy)[(a1 + az)(ay + b11x) + b11baoxy]
if b12 = —b2a, b2y = 0 andayaz(ay + az) (a1 + 2az)baz # 0;
V = (bux — baoy)as(biax +b2oy) + (b11x — b22y)?]
x[ (a1 + b11x)? + baoy (21 — 2b11x + ba2y)]
if ay = ay, b1o = 3boo, bpy = 3b1; andaibi1bss # 0;
V = y(a1 + baay) (baax + 2byoy)[b11x(2a1 + bagy) + 2(ay + bazy)?]
if ay = ag, b1o = 3bao, bpy = 0 andaiby1by # 0;
V = ylaibax + (a1 + baoy)?][asbarx + 2baay(as + bazy)]
if ay = ay, b1o = 3boo, b1y = 2by; andaiby1 # 0O;

V = x%y%(a1 — baay)

if ay = —az, bio = —bay, by = 0 andaib11byy # 0. These different inverse integrating
factorsV of degree five provide the first integrals (c), (h)—(k), respectively, and completes the
proof of theorem 1. O

We note first that statement (a) is the invariant 1l of @at al [3, 10] and second that
statements (d)—(j) concern cases with the conditios: a,, which is the condition of having
a time-dependent first integral, which is the invariant Il of the same authors. We see that it is
required at least one additional condition to have an integrable system.

3. Polynomial integrating factors

This section is devoted to proving theorem 2.

Proof of theorem 2. We assume thafl is a polynomial first integral of degree+ 3 for the
two-dimensional Lotka—Volterra system (1). Therefore, from (5), it follows that the integrating
factor R is a polynomial of degree. We write R = er‘l+j:0 a; jx'y/. Then, the identically
zero polynomialX R + R div(P, Q) of degreen + 1 provides the following linear system of
(n+2)(n + 3)/2 equations in thén + 1)(n + 2)/2 variablesy; ; (the coefficients o). Each
equation of this system comes from identifying with zero every coefficient of (4). Thus the
coefficient corresponding to the monomial’ is

a; ;[ + Dar+ (G + Dag] + a; j_1[(@ + Dbio+ (j + Dboo] + a;—1,;[(0 + Db11+ (j + Dbaq].

Of course, if some of the coefficients,, which appear in the last equation do not appear in
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R, then they must be taken equal to zero. Therefore, the complete linear system is

aoofar +az) =0
aio(2a1 +az) +ap,0(2b11 + ba1) =0
ao1(ay + 2az) +aoo(b12 + 2b22) =
azo(3ay +az) +a1,0(3b11 + b21) =
ar1(2a; +2az)  +ay0(2b12+ 2by2) +ao,1(2b11 + 2b71) =0
ao2(a1 + 3az) +ao1(b12 + 3b22) =0
azo(4ay +az) +az0(4b11 + b21) =0
az1(3ay + 2az) +az,0(3b12 + 2b22) +a11(3b11 + 2b21) =0
ay 2(2ay + 3az) +ay,1(2b12 + 3b22) +ag,2(2b11 + 3b21) =0
ao 3(ay + 4az) +ag2(b12 + 4b22) =0
=0
aoq(ay+ (n+1)az) +ao,-1(biz + (n + 1)b2y) =
apno((n+2)b11+bz) =0
an,o((n +Db1p+2b2) +an-11((n+1)b11+2bp) =0
an-11(nb12 + 3b22) +a,_22(nb1y + 3b21) =0
: : =0
a1n-1(2b12+ (n + D)bzp) +agn (2b1a + (n + 1bz1) =0
ao.n (b2 + (n + 2)bz2) =0.

Since we are searching the polynomial integrating fackoo§degree:, in order that the linear
subsystem formed by the last- 2 equations in the + 1 variabless, o, a,-11, . .., a0, has a
non-zero solution, thé: + 2) x (n + 1) matrix M of this subsystem must have rank smaller
thann + 1. Hence, the + 2 determinants of the submatricgs+ 1) x (n + 1) of M obtained
by omitting a row ofM must be zero, i.e.

n+l

[ [(+3— k)b + kbay) =0
k=1
[rkm+3—kWn+ka}X@u+m+2Wﬂ) =0
k=1
n—1 2
[rkm+3—kwn+wnq[rkmu+m+3—nma} =0
k=1 =1

=0
((n +2)ba1 + by1) x[rkwu+m+3—nm»}=o

=1

n+l

[[Ubro+ (1 +3-Dbz) =0.
=1
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The solutions of this last system are

ibig+ (n+3—1i)bp=0 (n+3—j)bu1+ jbnn=0 (13)
with

ie{l,...,n+1 jefl,....n+2—i}. (14)

So we haven + 1)(n + 2)/2 different solutions. By assumptids, + b3, + b3, + b3, # 0, and

we select one solution of (13) and (14). Then by inspection we see that all the combinations
abiz + Bbyo, ybi1 + b1 which appear in the firgl: + 1)(n + 2) /2 equations of the complete
linear system are not zero. Moreover, if all the expresstans-la, which appear in the linear
system are not zero, it follows easily thit= 0. So at least one of these expressions must be
zero. If two or more of them are zero, thep = a, = 0. In this last case we can compute

the polynomial first integral, which coincides with (e) of theorem 1. If only one expression
kay +lay is zero, then in order to avoil = 0 we must take

iay + jap = 0. (15)
Now by applying the first integral (a) of theorem 1, theorem 2 follows. O

Note that the case; = a, = 0 is contained in (15). When (13)—(15) are satisfied, it is
not difficult to verify that

R = x" Yy i(ag + byax) — jbyoy]"

4. Conclusion

In this work we prove that the use of an ansatz on the integrating factor, instead of on the first
integral, is quite productive in first integrals for a given two-dimensional differential system.
As a matter of fact, using only polynomial inverse integrating factors up to degree five, we have
obtained 10 new first integrals for the two-dimensional Lotka—Volterra system. Moreover, the
use of polynomial integrating factors has been useful to establish a general proof of the fact
that only two classes of polynomial first integrals (cases (a) and (e) of theorem 1) exist for
this system. With the help of computer algebra, the way is now open to search new cases of
integrability with inverse integrating factors of degree higher than five.
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