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Abstract. We present new first integrals of the two-dimensional Lotka–Volterra systems which
have a polynomial inverse integrating factor. Moreover, we characterize all the polynomial first
integrals of the two-dimensional Lotka–Volterra systems.

1. Introduction and statement of the results

The two-dimensional Lotka–Volterra dynamical system is defined by

ẋ = x(a1 + b11x + b12y) ẏ = y(a2 + b21x + b22y) (1)

where(a1, b11, b12, a2, b21, b22) are six real (or complex) parameters. This system introduced
by Lotka [1] and Volterra [2] appears in chemistry and ecology where it models two species
in competition, and it has been widely used in applied mathematics and in a large variety of
physical topics such as laser physics, plasma physics, convective instabilities, neural networks,
etc. Many authors have examined the integrability of the two-dimensional Lotka–Volterra
systems, see for instance Cairó et al [3] (who used the Carleman method), Huaet al [4]
(who used the Hamiltonian method), Cairó and Llibre [5] and Caiŕo et al [6] (who used
the Darboux theory of integrability) or the integrability of the three-dimensional Lotka–
Volterra systems (see Grammaticoset al [7], Almeida et al [8] and Caiŕo and Llibre [9]).
These systems have been studied in arbitrary dimension by Cairó et al [3] and Caiŕo and
Feix [10].

Recently, Moulin-Ollagnier [11] and Labrunie [12] have characterized the polynomial first
integrals of a special three-dimensional Lotka–Volterra system, the so-calledABC system, i.e.

ẋ = x(Cy + z) ẏ = y(x +Az) ż = z(Bx + y).

The fact that the vector fields associated with theABC systems are homogeneous helps in the
study of their polynomial first integrals. In general, this is not the case for system (1), but of
course this system is simpler than theABC system as it is two dimensional.

The problem of the integrability of ordinary differential equations is closely related to the
problem of finding first integrals. The difficulty of the task was already noted by Poincaré
[13] in his discussion of a method to obtain polynomial or rational first integrals. The search
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for first integrals is a classical tool in the classification of all trajectories of a dynamical
system. The following natural question arises: given a system of ordinary differential equations
depending on parameters, how does one recognize the values of the parameters for which the
system possesses first integrals, or more specifically polynomial first integrals? Many different
methods have been used for studying the existence of first integrals. Some of them have been
developed for Hamiltonian systems, such as the Ziglin [14, 15] analysis, or the method based
on the Noether symmetries [16]. Other methods can be applied to non-Hamiltonian systems:
the method of Darboux [17], the method of Lie symmetries [18], Painlevé analysis [19],
the use of Lax pairs [20], the direct method [21], the linear compatibility analysis method
[22], the Carlemann embedding procedure [3, 10, 23, 24], the Hamiltonian method [4, 25], the
quasimonomial formalism [26], etc.

Typically, methods like Carleman or Hamiltonian are based on giving an ansatz to the
invariants (time-dependent first integrals). If the goal is only to obtain first integrals (i.e.
time-independent first integrals), then the progress in computer algebra now allows us to use
successfully the old method consisting in finding first integrals through the use of integrating
factors. In fact, once the integrating factor is found then the problem is reduced to a quadrature.
So, the first difficulty is in finding the integrating factor, the second being of pure integral
calculus. For the first, the method currently used is to give an ansatz, searching integrating
factors of a given type (for instance, a polynomial inverse) and solve an algebraic system to
determine the coefficients and the conditions that the differential system must satisfy. Let us
recall the basic concepts.

By definition acomplex(respectively,real) planar polynomial differential systemor simply
apolynomial systemwill be a differential system of the form

dx

dt
= ẋ = P(x, y) dy

dt
= ẏ = Q(x, y) (2)

where the dependent variablesx andy are complex (respectively, real), the independent one
(the time) t is real, andP andQ are polynomials in the variablesx andy with complex
(respectively, real) coefficients. The numberm = max{degP, degQ} denotes thedegreeof
the polynomial system. Thus the Lotka–Volterra system (1) is a polynomial system of degree
two, with

P = x(a1 + b11x + b12y) Q = y(a2 + b21x + b22y). (3)

In what follows we will denote the vector field associated with the polynomial system (2)
by

X = P ∂

∂x
+Q

∂

∂y
.

We denote byF, either the real fieldR, or the complex fieldC; and byF-polynomial
systemthe polynomial system (2) with the coefficients of the polynomialsP andQ in F. Also
we denote byF[x, y] the ring of polynomials in the variablesx andy with coefficients in
F.

Here we say thatH : F2 → F is afirst integralof theF-polynomial system (2) ifH is
a non-constant function which is constant on all solution curves(x(t), y(t)) of system (2);
i.e.H(x(t), y(t)) = constant for all values oft for which the solution(x(t), y(t)) is defined.
Clearly,H is a first integral of system (2) if and only if the functionXH is identically zero.
If H is a first integral of system (2), then the trajectories of (2) are contained in the curves
H(x, y) = h whenh varies inF.



Integrability of the 2D Lotka–Volterra system 2409

Let R : F2 → F be an analytic function which is not identically zero. The function
R is an integrating factorof theR-polynomial system (2) if the following three equivalent
conditions holds:

∂(RP )

∂x
= −∂(RQ)

∂y
⇔ div(RP,RQ) = 0 ⇔ XR +R div(P,Q) = 0. (4)

As usual the divergence of the vector fieldX is defined by

div(X) = div(P,Q) = ∂P

∂x
+
∂Q

∂y
.

Thefirst integralH associated with the integrating factorR is given by

H(x, y) =
∫
R(x, y)P (x, y)dy + h(x)

whereh(x) is a function satisfying∂H/∂x = −RQ. Then

ẋ = RP = ∂H

∂y
ẏ = RQ = −∂H

∂x
. (5)

Conversely, given a first integralH of system (2) we can always find an integrating factorR

for which (5) holds.
Chavarrigaet al [27] consider the inverse integrating factor and show that, in general, it

is better to work with it instead of working directly with a first integral or an integrating factor
to study the integrability of a given two-dimensional differential system.

Let V : F2→ F be an analytic function which is not identically zero. The functionV is
an inverse integrating factorof theR-polynomial system (2) if the following condition holds:

XV − V div(P,Q) = 0 (6)

which is simply (4) written withR = 1/V .
The paper is divided into two parts. In the first part we study the first integrals of the

two-dimensional Lotka–Volterra systems which have a polynomial inverse integrating factor,
and in the second part we characterize all the polynomial first integrals of the two-dimensional
Lotka–Volterra systems via a polynomial integrating factor.

The results of the first part are given in the next theorem, where we omit the
symmetric cases that can be obtained under the symmetry(x, a1, b11, b12, y, a2, b21, b22)→
(y, a2, b22, b21, x, a1, b12, b11). We must mention that the first integrals presented in the next
theorem have been obtained only using polynomial inverse integrating factors of degree at
most five.

Theorem 1. System (1) possess a first integralH if it satisfies the conditions:

(a) r12 = a1b22(b21− b11)+ a2b11(b12− b22) = 0 anda1a2b11b22(b12− b22)(b21− b11) 6= 0,
and then

H = xb22(b21−b11)yb11(b12−b22) (a1a2 + a2b11x + a1b22y)
b11b22−b12b21

(b) b12 = b21 = 0 anda1a2(a1 + a2) 6= 0, and then

H = xa2y−a1(a1 + b11x)
−a2(a2 + b22y)

a1
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(c) b12 = −b22, b21 = 0 anda1a2(a1 + a2)(a1 + 2a2)b22 6= 0, and then

H = xa2y−a1(a2 + b22y)
a1+a2 [(a1 + a2)(a1 + b11x) + b11b22xy]−a2

(d) a2 = a1, b21 = 0 andb22(b12− b22)(b12− 2b22) 6= 0, and then

H = xb22(a1 + b22y)
b22−b12 [b11x + (b12− b22)y]−b22

(e) a1 = a2 = 0, [b22(b21− b11) + b11(b12− b22)](b11b22− b12b21) = 0 andb11b22(b12−
b22)(b21− b11) 6= 0, so

H = xb22(b21−b11)yb11(b12−b22) (b11x + b22y)
b11b22−b12b21

(f) a1 = a2, b21 = b22 = 0 anda1b12 6= 0, and then

H = x−a1(b11x + b12y)
a1eb12y

(g) a1 = a2, b21 = 0, b12 = b22 andb22 6= 0, and then

H = (a1 + b22y)
b11eb22y/x

(h) a1 = a2, b12 = 3b22, b21 = 3b11 anda1b11b22 6= 0, and then

H = [a1(b11x + b22y) + (b11x − b22y)
2](b11x − b22y)

−1[(a1 + b11x)
2

+b22y(2a1− 2b11x + b22y)]
−1/2

(i) a1 = a2, b12 = 3b22, b21 = 0 anda1b11b22 6= 0, and then

H = y[b11x(2a1 + b22y) + 2(a1 + b22y)
2](a1 + b22y)

−2(b11x + 2b22y)
−1

(j) a1 = a2, b12 = 3b22, b11 = 2b21 anda1b11 6= 0, and then

H = y2[a1b11x + (a1 + b22y)
2][a1b11x + 2b22y(a1 + b22y)]

−2

(k) a1 = −a2, b12 = −b22, b21 = 0 anda1b11b22 6= 0, and then

H = y−1(a1− b22y) exp

[
a1(a1 + b11x)

b11b22xy

]
.

The theorem is stated when system (1) is complex. If this system is real, then all the
functions of the formf (x, y)a that appear in the expression of the first integrals must be
|f (x, y)|a.
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Theorem 1 will be proved in section 2. We remark that the first integral given in
statement (a) exists for a subclass of codimension one inside the six-dimensional space of
the Lotka–Volterra systems (1), the first integrals (b)–(d) exist for a subclass of codimension
two, and the remaining first integrals of theorem 1 exist for a subclass of codimension three.
Note also that the first integral (a) was already known [3]. Of course, if we had searched
polynomial inverse integrating factors of degree larger than five, we would have obtained
more new first integrals for the two-dimensional Lotka–Volterra systems.

The next theorem concerns our main result characterizing all polynomial first integrals of
the two-dimensional Lotka–Volterra systems.

Theorem 2. Suppose that the two-dimensional Lotka–Volterra system is not trivial, i.e. that
b2

11 + b2
12 + b2

21 + b2
22 6= 0. Then given a non-negative integern system (1) has a polynomial

first integral of degreen + 3 if and only if one of the following cases holds:

ib12 + (n + 3− i)b22 = 0 (n + 3− j)b11 + jb21 = 0 ia1 + ja2 = 0 (7)

with i ∈ {1, . . . , n + 1} andj ∈ {1, . . . , n + 2− i}. Moreover, under assumptions (7) the first
integral is

H = xiyj [i(a1 + b11x)− jb22y]n+3−i−j . (8)

Note that for eachn if we vary i andj there are(n + 1)(n + 2)/2 polynomial first integrals of
degreen + 3.

Theorem 2 shows that all polynomial first integrals of the two-dimensional Lotka–Volterra
systems are particular cases of the first integrals (a) and (e) of theorem 1. We will prove
theorem 2 in section 3. The key point in our proof will be the employment of the polynomial
integrating factor associated with a polynomial first integral of a polynomial differential system.

2. Polynomial inverse integrating factors

Here we use onlypolynomial inverseintegrating factors up to degree five to obtain some new
first integrals of the two-dimensional Lotka–Volterra systems (1).

We writeV =∑n
i+j=0 ai,j x

iyj . Then, the identically zero polynomial (6) of degreen+ 1
provides the following linear system of(n + 2)(n + 3)/2 equations in the(n + 1)(n + 2)/2
variablesai,j (the coefficients ofV ). Each equation of this system comes from identifying to
zero every coefficient of (6). Thus the coefficient corresponding to the monomialxiyj is

ai,j [(i − 1)a1 + (j − 1)a2] + ai,j−1[(i − 1)b12 + (j − 3)b22]

+ai−1,j [(i − 3)b11 + (j − 1)b21].

If some of the coefficientsal,m which appear in the last equation do not appear inV , then they
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must be taken equal to zero. Therefore, the complete linear system is

a0,0(−a1− a2) = 0

a1,0(−a2) +a0,0(−2b11− b21) = 0

a0,1a1 +a0,0(b12 + 2b22) = 0

a2,0(a1− a2) +a1,0(−b11− b21) = 0

a1,0(−2b22) +a0,1(−2b11) = 0

a0,2(−a1 + a2) +a0,1(−b12− b22) = 0

a3,0(2a1− a2) +a2,0(−b21) = 0

a2,1a1 +a2,0(b12− 2b22) +a1,1(−b11) = 0

a1,2a2 +a1,1(−b22) +a0,2(−2b11 + b21) = 0

a0,3(−a1 + 2a2) +a0,2(−b12) = 0

...
...

... = 0

a0,n(−a1 + (n− 1)a2)+a0,n−1(−b12 + (n− 3)b22) = 0

an,0((n− 2)b11− b21) = 0

an,0((n− 1)b12− 2b22) +an−1,1((n− 3)b11) = 0

an−1,1((n− 2)b12− b22) +an−2,2((n− 4)b11 + b21) = 0

...
... = 0

a1,n−1((n− 3)b22) +a0,n(−2b11 + (n− 1)b21) = 0

a0,n(−b12 + (n− 2)b22) = 0.

We are searching here for the polynomial inverse integrating factorsV of degreen. So,
in order for the linear subsystem formed by the lastn + 2 equations in then + 1 variables
an,0, an−1,1, . . . , a0,n to have a non-zero solution, the(n + 2) × (n + 1) matrix M of this
subsystem must have rank smaller thann+1. Hence, then+2 determinants of the submatrices
(n + 1)× (n + 1) of M obtained by omitting a row ofM must be zero, i.e.

n+1∏
k=1

((n− 1− k)b11 + (k − 2)b21) = 0[
n∏
k=1

((n− 1− k)b11 + (k − 2)b21)

]
×(−b12 + (n− 2)b22) = 0[

n−1∏
k=1

((n− 1− k)b11 + (k − 2)b21)

]
×
[

2∏
l=1

((l − 2)b12 + (n− 1− l)b22)

]
= 0

...
... = 0

((n− 2)b11− b21) ×
[

n∏
l=1

((l − 2)b12 + (n− 1− l)b22)

]
= 0

n+1∏
l=1

((l − 2)b12 + (n− 1− l)b22) = 0.

(9)
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If n 6= 3 then the solutions of this last system are

(i − 2)b12 + (n− 1− i)b22 = 0 (n− 1− j)b11 + (j − 2)b21 = 0 (10)

with

i ∈ {1, . . . , n + 1} j ∈ {1, . . . , n + 2− i}. (11)

So we have(n + 1)(n + 2)/2 different solutions.
If n = 3 then the determinant of system (9) is identically zero.

Proof of theorem 1.First we search the polynomial inverse integrating factors of degree three.
Taking all the coefficientsaij of V zero except for the coefficientsa11, a21 anda12, the above
linear system becomes

−a11b11 + a1a21 = 0

−a11b22 + a2a12 = 0 (12)

a21(b12− b22) + a12(b21− b11) = 0

which is a linear system with three equations and three variablesa11, a21 anda12. The solution
of (12) is not identically zero if the determinant of theaij , i.e. r12 = a1b22(b21 − b11) +
a2b11(b12 − b22) is zero. Then, its solution isa11 = a1a2, a21 = a2b11 anda12 = a1b22 if
a1a2b11b22(b12− b22)(b21− b11) 6= 0. Hence

V = xy(a1a2 + a2b11x + a1b22y).

Using this inverse integrating factor we obtain the first integral (a).
Searching other polynomial inverse integrating factors of degree three we find

V = x(a1 + b22y)[b11x + (b12− b22)y]

if a1 = a2, b21 = 0 andb22(b12− b22)(b12− 2b22) 6= 0;

V = xy(b11x + b22y)

if a1 = a2 = 0, [b22(b21 − b11) + b11(b12 − b22)](b11b22 − b12b21) = 0 andb11b22(b12 −
b22)(b21− b11) 6= 0; and

V = x2(a2 + b22y)

if a1 = a2, b21 = 0, b12 = b22 andb22 6= 0. These different inverse integrating factorsV of
degree three provide the first integrals (d), (e) and (g), respectively.

Now we search the polynomial inverse integrating factors of degreen = 0, 1, 2, 4, 5 which
provide integrable Lotka–Volterra systems different from the systems with first integrals (a),
(b), (e) and (g). Using the above linear system, it is easy to see that there are no new integrable
cases having a polynomial inverse integrating factor of degreen = 0 or 1.

Searching the polynomial inverse integrating factors of degree four we obtain

V = xy(a1 + b11x)(a2 + b22y)

if b12 = b21 = 0 anda1a2(a1 + a2) 6= 0. ThisV provides the first integral (b).
Computing polynomial inverse integrating factors of degree two which correspond to new

integrable systems, we obtain

V = x(b11x + b12y)

if a1 = a2, b21 = b22 = 0 anda1b12 6= 0. ThisV provides the first integral (f).
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Searching polynomial inverse integrating factors of degree five which give new integrable
systems, we find

V = xy(a2 + b22y)[(a1 + a2)(a1 + b11x) + b11b22xy]

if b12 = −b22, b21 = 0 anda1a2(a1 + a2)(a1 + 2a2)b22 6= 0;

V = (b11x − b22y)[a1(b11x + b22y) + (b11x − b22y)
2]

×[(a1 + b11x)
2 + b22y(2a1− 2b11x + b22y)]

if a1 = a2, b12 = 3b22, b21 = 3b11 anda1b11b22 6= 0;

V = y(a1 + b22y)(b11x + 2b22y)[b11x(2a1 + b22y) + 2(a1 + b22y)
2]

if a1 = a2, b12 = 3b22, b21 = 0 anda1b11b22 6= 0;

V = y[a1b11x + (a1 + b22y)
2][a1b11x + 2b22y(a1 + b22y)]

if a1 = a2, b12 = 3b22, b11 = 2b21 anda1b11 6= 0;

V = x2y2(a1− b22y)

if a1 = −a2, b12 = −b22, b21 = 0 anda1b11b22 6= 0. These different inverse integrating
factorsV of degree five provide the first integrals (c), (h)–(k), respectively, and completes the
proof of theorem 1. �

We note first that statement (a) is the invariant III of Cairó et al [3, 10] and second that
statements (d)–(j) concern cases with the conditiona1 = a2, which is the condition of having
a time-dependent first integral, which is the invariant II of the same authors. We see that it is
required at least one additional condition to have an integrable system.

3. Polynomial integrating factors

This section is devoted to proving theorem 2.

Proof of theorem 2. We assume thatH is a polynomial first integral of degreen + 3 for the
two-dimensional Lotka–Volterra system (1). Therefore, from (5), it follows that the integrating
factorR is a polynomial of degreen. We writeR = ∑n

i+j=0 ai,j x
iyj . Then, the identically

zero polynomialXR + R div(P,Q) of degreen + 1 provides the following linear system of
(n + 2)(n + 3)/2 equations in the(n + 1)(n + 2)/2 variablesai,j (the coefficients ofR). Each
equation of this system comes from identifying with zero every coefficient of (4). Thus the
coefficient corresponding to the monomialxiyj is

ai,j [(i + 1)a1 + (j + 1)a2] + ai,j−1[(i + 1)b12 + (j + 1)b22] + ai−1,j [(i + 1)b11 + (j + 1)b21].

Of course, if some of the coefficientsal,m which appear in the last equation do not appear in



Integrability of the 2D Lotka–Volterra system 2415

R, then they must be taken equal to zero. Therefore, the complete linear system is

a0,0(a1 + a2) = 0

a1,0(2a1 + a2) +a0,0(2b11 + b21) = 0

a0,1(a1 + 2a2) +a0,0(b12 + 2b22) = 0

a2,0(3a1 + a2) +a1,0(3b11 + b21) = 0

a1,1(2a1 + 2a2) +a1,0(2b12 + 2b22) +a0,1(2b11 + 2b21) = 0

a0,2(a1 + 3a2) +a0,1(b12 + 3b22) = 0

a3,0(4a1 + a2) +a2,0(4b11 + b21) = 0

a2,1(3a1 + 2a2) +a2,0(3b12 + 2b22) +a1,1(3b11 + 2b21) = 0

a1,2(2a1 + 3a2) +a1,1(2b12 + 3b22) +a0,2(2b11 + 3b21) = 0

a0,3(a1 + 4a2) +a0,2(b12 + 4b22) = 0

...
...

... = 0

a0,n(a1 + (n + 1)a2)+a0,n−1(b12 + (n + 1)b22) = 0

an,0((n + 2)b11 + b21) = 0

an,0((n + 1)b12 + 2b22) +an−1,1((n + 1)b11 + 2b21) = 0

an−1,1(nb12 + 3b22) +an−2,2(nb11 + 3b21) = 0

...
... = 0

a1,n−1(2b12 + (n + 1)b22)+a0,n(2b11 + (n + 1)b21) = 0

a0,n(b12 + (n + 2)b22) = 0.

Since we are searching the polynomial integrating factorsR of degreen, in order that the linear
subsystem formed by the lastn + 2 equations in then + 1 variablesan,0, an−1,1, . . . , a0,n has a
non-zero solution, the(n + 2) × (n + 1) matrixM of this subsystem must have rank smaller
thann + 1. Hence, then + 2 determinants of the submatrices(n + 1)× (n + 1) of M obtained
by omitting a row ofM must be zero, i.e.

n+1∏
k=1

((n + 3− k)b11 + kb21) = 0[
n∏
k=1

((n + 3− k)b11 + kb21)

]
×(b12 + (n + 2)b22) = 0[

n−1∏
k=1

((n + 3− k)b11 + kb21)

][
2∏
l=1

(lb12 + (n + 3− l)b22)

]
= 0

...
... = 0

((n + 2)b11 + b21) ×
[

n∏
l=1

(lb12 + (n + 3− l)b22)

]
= 0

n+1∏
l=1

(lb12 + (n + 3− l)b22) = 0.
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The solutions of this last system are

ib12 + (n + 3− i)b22 = 0 (n + 3− j)b11 + jb21 = 0 (13)

with

i ∈ {1, . . . , n + 1} j ∈ {1, . . . , n + 2− i}. (14)

So we have(n + 1)(n + 2)/2 different solutions. By assumptionb2
11 + b2

12 + b2
21 + b2

22 6= 0, and
we select one solution of (13) and (14). Then by inspection we see that all the combinations
αb12 + βb22, γ b11 + δb21 which appear in the first(n + 1)(n + 2)/2 equations of the complete
linear system are not zero. Moreover, if all the expressionska1 + la2 which appear in the linear
system are not zero, it follows easily thatR ≡ 0. So at least one of these expressions must be
zero. If two or more of them are zero, thena1 = a2 = 0. In this last case we can compute
the polynomial first integral, which coincides with (e) of theorem 1. If only one expression
ka1 + la2 is zero, then in order to avoidR ≡ 0 we must take

ia1 + ja2 = 0. (15)

Now by applying the first integral (a) of theorem 1, theorem 2 follows. �
Note that the casea1 = a2 = 0 is contained in (15). When (13)–(15) are satisfied, it is

not difficult to verify that

R = xi−1yj−1 [i(a1 + b11x)− jb22y]n+2−i−j .

4. Conclusion

In this work we prove that the use of an ansatz on the integrating factor, instead of on the first
integral, is quite productive in first integrals for a given two-dimensional differential system.
As a matter of fact, using only polynomial inverse integrating factors up to degree five, we have
obtained 10 new first integrals for the two-dimensional Lotka–Volterra system. Moreover, the
use of polynomial integrating factors has been useful to establish a general proof of the fact
that only two classes of polynomial first integrals (cases (a) and (e) of theorem 1) exist for
this system. With the help of computer algebra, the way is now open to search new cases of
integrability with inverse integrating factors of degree higher than five.
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[6] Cairó L, Feix M R and Llibre J 1999 Darboux method and search of invariants for the Lotka–Volterra and

complex quadratic systemsJ. Math. Phys.402074–91
[7] Grammaticos B, Moulin-Ollagnier J, Ramani A, Strelcyn J M and Wojciechowski S 1990 Integrals of quadratic

ordinary differential equations inR3: the Lotka–Volterra systemPhysicaA 163683–722



Integrability of the 2D Lotka–Volterra system 2417

[8] Almeida M A, Magalh̃aes M E and Moreira I C 1995 Lie symmetries and invariants of the Lotka–Volterra system
J. Math. Phys.361854–67
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